An improved sum-product estimate for general finite fields
نویسندگان
چکیده
منابع مشابه
The Sum-product Estimate for Large Subsets of Prime Fields
Let Fp be the field of prime order p. It is known that for any integer N ∈ [1, p] one can construct a subset A ⊂ Fp with |A| = N such that max{|A+ A|, |AA|} p|A|. One of the results of the present paper implies that if A ⊂ Fp with |A| > p2/3, then max{|A+ A|, |AA|} p|A|.
متن کاملSzemerédi-Trotter type theorem and sum-product estimate in finite fields
We study a Szemerédi-Trotter type theorem in finite fields. We then use this theorem to obtain an improved sum-product estimate in finite fields.
متن کاملAn explicit sum-product estimate in Fp
Let Fp be the field of residue classes modulo a prime number p and let A be a non-empty subset of Fp. In this paper we give an explicit version of the sum-product estimate of Bourgain, Katz, Tao and Bourgain, Glibichuk, Konyagin on the size of max{|A+A|, |AA|}. In particular, our result implies that if 1 < |A| ≤ p7/13(log p)−4/13, then max{|A + A|, |AA|} ≫ |A|15/14 (log |A|)2/7 . 2000 Mathemati...
متن کاملPinned distance sets, Wolff’s exponent in finite fields and improved sum-product estimates
An analog of the Falconer distance problem in vector spaces over finite fields asks for the threshold α > 0 such that |∆(E)| & q whenever |E| & q, where E ⊂ Fq , the d-dimensional vector space over a finite field with q elements (not necessarily prime). Here ∆(E) = {(x1 − y1) 2 + · · ·+ (xd − yd) 2 : x, y ∈ E}. The second listed author and Misha Rudnev ([4]) established the threshold d+1 2 , an...
متن کاملSum-product Estimates in Finite Fields via Kloosterman Sums
We establish improved sum-product bounds in finite fields using incidence theorems based on bounds for classical Kloosterman and related sums.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Discrete Mathematics
سال: 2011
ISSN: 0895-4801,1095-7146
DOI: 10.1137/110823122